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The author appreciates the opportunity to comment on the letter to the editor by Professor
M. Pakdemirli.

The "rst issue discussed is the use of general operator notation with the method of
multiple scales. While it seems to be a well-established practice to use abstract operator
notation in theoretical mechanics, in the framework of the method of multiple scales,
Professor Pakdemirli invaluably envisioned the importance of proposing a general
non-linear operator notation [1]. In fact, the latter allows for a broader generality of the
relevant obtained results. It is also worth mentioning that such a notation had been
previously used, among others, by Simmons [2] in a pedestrain expansion constructed to
determine general resonance conditions for weak wave interactions as Professor Pakdemirli
himself pointed out in reference [1].

The second issue regards the comparison between the full-basis Galerkin discretization
procedure (using the eigenbase of the associated linear undamped unforced problem) and
the direct perturbation approach to non-linear vibrations of continuous systems with
quadratic and cubic non-linearities. Referring to the paper by Pakdemirli and Boyaci [3],
my statement in reference [4]*&&However, in their analysis, one of the fundamental results
was postulated instead of proved''*requires some additional clarifying comments.

To show that the approximate solutions obtained with the two approaches are
equivalent, in reference [3] they constructed second order expansions of the displacement
"elds with both methods thereby &&directly'' concluding that the second order spatial shape
functions obtained with the direct approach are the converged forms of the in"nite series
obtained with discretization. In an earlier work, to show this result in the particular case of
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unforced undamped "nite-amplitude vibrations of a beam resting on an elastic foundation
with quadratic and cubic non-linearities, Nayfeh et al. [5] expanded the second order shape
functions obtained with the direct approach in in"nite series of the relevant eigenfunctions
and obtained the same series of the discretization procedure.

In reference [4] this result is shown to hold in a general and systematic fashion for
self-adjoint continuous systems with either geometric and inertia quadratic and cubic
non-linearities subject to either primary- or subharmonically resonant excitations with or
without internal resonances. The simplicity of the analysis relies on the idea of showing that
the in"nite series obtained with discretization are solutions of the same boundary-value
problems governing the second order shape functions obtained with the direct approach. In
addition, contrary to the involved computations in reference [3], the perturbation schemes
in reference [4] take into account the in#uence of the directly excited mode only at "rst
order in the absence of internal resonances or that of the internally resonant modes only in
the presence of internal resonances. In fact, it is known a priori that the in#uences of all of
the other modes decay at steady state due to action of the damping.

Furthermore, in reference [4] the equivalence is established between the full-basis
discretization or direct approach and a novel low order-recti"ed Galerkin procedure [6].
The computational characteristics of the three analytical strategies are comparatively
shown as to possibly clarify advantages and drawbacks.
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